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ANALYSIS AND PRACTICAL USE OF FLEXIBLE BICGSTAB

JIE CHEN∗, LOIS CURFMAN MCINNES∗, AND HONG ZHANG∗

Abstract. A flexible version of the BiCGStab algorithm for solving a linear system of equations
is analyzed. We show that under variable preconditioning, the perturbation to the outer residual
norm is of the same order as that to the application of the preconditioner. Hence, in order to
maintain a similar convergence behavior to BiCGStab while reducing the preconditioning cost, the
flexible version can be used with a moderate tolerance in the preconditioning Krylov solves. We
explored the use of flexible BiCGStab in a large-scale reacting flow application, PFLOTRAN, and
showed that the use of a variable multigrid preconditioner significantly accelerates the simulation
time on extreme-scale computers using O(104)–O(105) processor cores.
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1. Introduction. Flexible iterative methods [8, 13, 14, 21, 23, 33, 37] for solving
a linear system of equations refer to preconditioned Krylov methods where the pre-
conditioner may vary across iterations. The flexible preconditioning strategy is also
known under various terms such as variable or inexact preconditioning. A representa-
tive scenario is that the preconditioning requires a linear solve with a second iterative
method, in which case “inner iterations” refer to preconditioning and “outer itera-
tions” refer to the flexible Krylov method itself. Flexible methods are an important
class of methods that offer several advantages over the use of a fixed preconditioner,
one of which is the flexibility to balance the accuracy of the preconditioning solves
and the speed of convergence of the outer Krylov iterations in order to reduce the
total computational cost. Furthermore, in large-scale applications, the changing land-
scape of both scientific needs (complex physical models and couplings) and emerging
extreme-scale computing systems give rise to practical preconditioners that are hier-
archical or nested [5, 6, 9, 15, 18, 26]. Many of these emerging preconditioners benefit
from inexact inner solves and thus require the use of outer flexible Krylov methods.

Among many proposed flexible iterative methods, flexible GMRES (abbreviated
as FGMRES [23]) is the most frequently used in practice. Its wide use is proba-
bly linked to the robustness that results from the long-term recurrence and global
orthogonality. Compared with standard GMRES [25], even though the traditional
notion of a Krylov subspace is lost, FGMRES computes an orthonormal basis of a
subspace within which an optimal residual is sought. Hence, FGMRES still enjoys the
residual norm minimization property, and it often shows a satisfactory convergence
behavior. On the other hand, in other flexible iterative methods with short-term re-
currences, such as inexact PCG [14], flexible QMR [33], and flexible BiCG [37], global
(bi)orthogonality is lost, and the convergence behavior is often unpredictable unless
the inner solves are sufficiently accurate so that orthogonality is nearly preserved.
An idea to improve the robustness is to explicitly perform the orthogonalization as
proposed for a variant of the flexible CG algorithm [21]. On the other hand, several
analyses of flexible methods, using a larger Krylov subspace that includes the Arnoldi
vectors, indicate that the convergence behavior can be maintained with respect to the
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fixed preconditioning case if the perturbation to the preconditioner grows inversely
with the current residual norm [10, 27, 28].

BiCGStab [34] is a widely used Krylov method. In many applications, BiCGStab
outperforms GMRES in terms of both solution time and memory usage, and it has
become the de facto method of choice for practitioners. Although BiCGStab is akin
to BiCG [11], which generates two sets of biorthogonal residual vectors that natu-
rally form two associated Krylov subspaces, the convergence behavior of BiCGStab is
harder to describe because the residual vectors alone do not span the Krylov subspace
that contains them. BiCGStab can be seen as redefining the residual polynomial of
BiCG by squaring the degree with a smoothing effect. BiCGStab can also be under-
stood as a member of a family of induced dimension reduction (IDR) methods whereby
the generated residuals belong to a nested sequence of shrinking subspaces [29, 30, 31],
which is analogous to other Krylov methods where there is a similar subspace defined
(for example, K⊥ for CG and (AK)⊥ for GMRES, where K is the current Krylov sub-
space). The orthogonal complement notation for the latter methods is consistent with
Saad’s viewpoint of projection methods [24]; however, BiCGStab does not belong to
this class.

We study the flexible BiCGStab algorithm (FBiCGStab) in this paper. FBiCGStab
was initially proposed in [37], and it was recently cast under the framework of flex-
ible variants of IDR methods [35]. However, little is known about its convergence
properties. The goal of this paper is to analyze the behavior of the method and to
provide guidance on its practical use. We do not study the convergence guarantee
of the method, but we argue that the convergence behavior is close to that of the
fixed preconditioning case if the perturbation to the preconditioner is not too large.
Thus, an appropriate perturbation is key to the performance: if too large, the residual
behavior of the outer iterations is unpredictable; if too small, the inner solves may
be time consuming to complete. Because of the loose connection of BiCGStab with
the associated Krylov subspace, this analysis is different from that for other flexible
Krylov methods (see [10, 27, 28]). Rather, the arguments are made on orthogonality
and norm minimization properties that guarantee bounds of perturbations on the it-
erates. Interestingly, this result can lead to a conclusion similar to that in [10, 27, 28],
that is, the convergence behavior of the flexible method can be maintained by relax-
ing the accuracy requirement of the preconditioning solves as the outer residual norm
decreases, although this result might be less practically useful (see Section 2.2).

What motivates our study of FBiCGStab is the scaling difficulty of the simulation
of reacting flows in a geological application PFLOTRAN [17, 19] on extreme-scale par-
allel computers. A well-known bottleneck in Krylov methods for solving large-scale
linear systems on parallel computers is the inner-product calculations, because they
require global synchronizations. The scaling of the solver starts to deteriorate when
the number of processor cores increases beyond O(105) [2]. Among several strategies,
such as deferring or pipelining inner product calculations, overlapping communications
with computations, and block orthogonalizations [7, 12, 20, 32, 36, 38], the use of a
hierarchical preconditioner that reduces the length of vectors in inner-product calcu-
lations has been demonstrated to be effective for inner-outer GMRES iterations [18].
This discovery prompted us to generalize the idea to flexible BiCGStab iterations, be-
cause BiCGStab has historically been the preferred solver for PFLOTRAN by domain
scientists. Based on the perturbation analysis, we use multigrid preconditioners and
see remarkable improvement in the simulation time using O(104)–O(105) processor
cores.
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The rest of the paper is organized as follows. With a brief derivation of FBiCGStab,
Section 2 analyzes the behavior of the residual norm under flexible preconditioning and
gives examples to illustrate the interpretation of the results. Then, several numerical
examples are shown in Section 3 to demonstrate the need for a stopping criterion with
a moderate tolerance in the preconditioning inner solves. Section 4 presents the suc-
cessful use of FBiCGStab with multigrid preconditioners in PFLOTRAN. Concluding
remarks are given in Section 5.

2. Algorithm and analysis. The following is the standard unpreconditioned
BiCGStab algorithm for solving a linear system

Ax = b,

using x0 as the initial vector [24]:

1: r0 = b−Ax0; r̄0 arbitrary but (r̄0, r0) 6= 0
2: p0 = r0
3: for j = 0, 1, . . . until convergence do
4: αj = (rj , r̄0)/(Apj , r̄0)
5: sj = rj − αjApj
6: ωj = (Asj , sj)/(Asj , Asj)
7: xj+1 = xj + αjpj + ωjsj
8: rj+1 = sj − ωjAsj
9: βj = (rj+1, r̄0)/(rj , r̄0) · αj/ωj

10: pj+1 = rj+1 + βj(pj − ωjApj)
11: end for

The coefficient iterates αj and βj are derived based on their counterparts in BiCG
for updating the residual vectors and the search direction vectors. One can show that
αj makes sj ⊥ r̄0 and βj makes pj+1 ⊥ r̄0 for all j. Furthermore, ωj is defined to
minimize the 2-norm of the residual vector rj+1 given sj and Asj .

When the algorithm is used with a preconditioner M ≈ A, the right precondi-
tioning consists of solving the system

AM−1y = b, y = Mx.

One way to derive the preconditioned iteration is, in the above unpreconditioned
version, to replace the symbol A by AM−1 and xj by yj , and then substitute yj
back by Mxj . This introduces two auxiliary vectors p̃j = M−1pj and s̃j = M−1sj ,
which are the only computations that require the preconditioner. We summarize this
preconditioned version in Algorithm 1. It is the same as the one presented in [37].

One would also like to consider left preconditioning, where M−1 is applied to
the left of the system Ax = b. After a change of variables, the left preconditioned
version is almost the same as Algorithm 1, except that the two inner products in
line 8 are changed to the ones using (MMT )−1-norm. In this case, ωj minimizes the
(MMT )−1-norm of rj+1. Compared with right preconditioning, left preconditioning
incurs two more applications of the preconditioner in each iteration, which increases
the computational cost. Furthermore, similar to other Krylov methods, a major hurdle
for developing variable preconditioners for left preconditioning is the disconnection
between the preconditioned residuals and the actual residuals. Therefore, we do not
consider left preconditioning in this paper.
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Algorithm 1 Right preconditioned BiCGStab / Flexible BiCGStab

1: r0 = b−Ax0; r̄0 arbitrary
2: p0 = r0
3: for j = 0, 1, . . . until convergence do
4: p̃j = M−1pj
5: αj = (rj , r̄0)/(Ap̃j , r̄0)
6: sj = rj − αjAp̃j
7: s̃j = M−1sj
8: ωj = (As̃j , sj)/(As̃j , As̃j)
9: xj+1 = xj + αj p̃j + ωj s̃j

10: rj+1 = sj − ωjAs̃j
11: βj = (rj+1, r̄0)/(rj , r̄0) · αj/ωj
12: pj+1 = rj+1 + βj(pj − ωjAp̃j)
13: end for

An iterative method can be used to compute p̃j in line 4 and s̃j in line 7 of
Algorithm 1, but the iterations may not run to full accuracy. In this case, Algorithm 1
becomes the flexible version of BiCGStab. The computed iterates p̃j and s̃j under
inexact preconditioning will carry on their error to subsequent iterations. To gauge
the amplification of error, we are interested in the situation that the relative residual
of the inner solves with M is bounded by a small tolerance ε. That is, if we use an
underline to denote the actual iterates with errors, we assume that

‖pj −Mp̃j‖ ≤ ε‖pj‖ and ‖sj −Ms̃j‖ ≤ ε‖sj‖. (2.1)

The following subsection characterizes the relative difference between rj+1 and rj+1

under condition (2.1).

2.1. Analysis. The analysis is based on the fact that the coefficient iterates αj ,
βj , and ωj are computed such that the inaccuracy incurred in the preconditioning
solves is not “adversely” accumulated to affect outer iterations. For this, we need the
following observations. They are trivially correct in the fixed preconditioned case,
but they are also true when a flexible preconditioner is used. The proof is simple and
thus omitted.

Proposition 2.1. The iterates in Algorithm 1 have the following properties:

(i) The vector rj+1 is the residual, that is, rj+1 = b−Axj+1.
(ii) Consider that sj is a function of αj; then the definition of αj in line 5 makes

sj ⊥ r̄0.
(iii) Consider that pj+1 is a function of βj; then the definition of βj in line 11

makes pj+1 ⊥ r̄0.
(iv) Consider that rj+1 is a function of ωj; then the definition of ωj in line 8

minimizes ‖rj+1‖2.

In light of these observations, we will bound the perturbation to vectors in the
form x−αy, where the scalar α is used to satisfy some orthogonality or minimization
property when x and y are perturbed. We will make heavy use of angles spanned by
two Rn vectors. For this, we use ∠(x, y) to denote the acute angle between the two
vectors, that is, |(x, y)| = ‖x‖‖y‖ cos∠(x, y). Hence, cos∠(x, y) is always nonnegative.
The following lemma establishes the basic fact, generalizing from the intuitive R3

case, that for three vectors spanning three angles, one of the angles is bounded by the
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sum and the difference of the other two. Then, two lemmas follow, stating that the
perturbation to x− αy is in the same order as that to x and y.

Lemma 2.2. If all pairwise angles among three vectors x, y, and z are acute,
then

|∠(x, y)− ∠(y, z)| ≤ ∠(x, z) ≤ ∠(x, y) + ∠(y, z).

Proof. Without loss of generality, we assume that ‖x‖ = ‖y‖ = ‖z‖ = 1. It
suffices to prove, for the case ∠(x, y) + ∠(y, z) is acute, that

cos∠(x, y) cos∠(y, z)− sin∠(x, y) sin∠(y, z) ≤ cos∠(x, z) ≤
cos∠(x, y) cos∠(y, z) + sin∠(x, y) sin∠(y, z),

which is equivalent to

|(x, z)− (x, y)(y, z)| ≤
√

1− (x, y)2
√

1− (y, z)2. (2.2)

Note that

|(x, z)− (x, y)(y, z)| = |xT (I − yyT )z|

and that √
1− (x, y)2

√
1− (y, z)2 =

√
xT (I − yyT )x

√
zT (I − yyT )z.

Thus, Cauchy’s inequality for vector semi-inner products with respect to the symmet-
ric positive semi-definite matrix I − yyT proves (2.2).

Lemma 2.3. Given a vector r, let z = x − αy and z = x − αy, where α =
(x, r)/(y, r) and α = (x, r)/(y, r), and let γ = sgn[(x, y)(x, r)(y, r)]. If there exist
εx, εy such that εx < cos∠(x, r), εy < cos∠(y, r) and that

‖x− x‖ ≤ εx‖x‖ and ‖y − y‖ ≤ εy‖y‖,

then ‖z − z‖ ≤ εz‖z‖ with

εz =

εx +
cos∠(x, r)

cos∠(y, r)

[
2εy + (1 + εx)(1 +B)(1 +D)− 1

]
√

1 +
cos2 ∠(x, r)

cos2 ∠(y, r)
− 2γ cos∠(x, y)

cos∠(x, r)

cos∠(y, r)

, (2.3)

B = εx

(
εx

2
√

1− ε2x
+ tan∠(x, r)

)
, D =

2εy
√

1− ε2y tan∠(y, r) + ε2y

−2εy
√

1− ε2y tan∠(y, r) + 2(1− ε2y)
.

In other words, denoting by ε = max{εx, εy}, we have εz ≤ Cε where the prefactor C
has a finite limit

lim
ε→0

C =
cos∠(y, r) + cos∠(x, r)[3 + tan∠(x, r) + tan∠(y, r)]√

cos2 ∠(y, r) + cos2 ∠(x, r)− 2γ cos∠(x, y) cos∠(x, r) cos∠(y, r)
.
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Proof. First we have

‖z − z‖ ≤ ‖x− x‖+ ‖αy − αy‖
≤ ‖x− x‖+ ‖α(y − y)‖+ ‖(α− α)y‖
≤ εx‖x‖+ εy‖αy‖+ ‖(α− α)y‖.

Based on Lemma 2.2, when εx < cos∠(x, r), the angle between x and r and that
between x and r will be acute, or obtuse, at the same time. This means that the
inner products (x, r) and (x, r) have the same sign. Similarly it holds for (y, r) and
(y, r). Thus, α and α have the same sign, and hence

‖(α− α)y‖
‖αy‖

=

∣∣∣∣‖y‖‖y‖ − ‖αy‖‖αy‖

∣∣∣∣ .
Using the fact that |‖y‖/‖y‖ − 1| ≤ εy, we get

‖(α− α)y‖ ≤ ‖αy‖
(
εy +

∣∣∣∣1− ‖αy‖‖αy‖

∣∣∣∣) . (2.4)

With ‖αy‖ = ‖x‖ cos∠(x, r)/ cos∠(y, r) and

‖z‖2 = ‖x‖2
(

1 +
cos2 ∠(x, r)

cos2 ∠(y, r)
− 2γ cos∠(x, y)

cos∠(x, r)

cos∠(y, r)

)
,

we thus obtain

‖z − z‖ ≤ εx‖x‖+ ‖αy‖
(

2εy +

∣∣∣∣1− ‖αy‖‖αy‖

∣∣∣∣)

= ‖z‖
εx + cos∠(x,r)

cos∠(y,r)

(
2εy +

∣∣∣1− ‖αy‖‖αy‖

∣∣∣)√
1 + cos2 ∠(x,r)

cos2 ∠(y,r) − 2γ cos∠(x, y) cos∠(x,r)
cos∠(y,r)

. (2.5)

Therefore, we proceed to bound∣∣∣∣1− ‖αy‖‖αy‖

∣∣∣∣ =

∣∣∣∣1− ‖x‖‖x‖ cos∠(x, r)

cos∠(x, r)

cos∠(y, r)

cos∠(y, r)

∣∣∣∣ .
The strategy of bounding this term is to find A,B,D > 0 such that∣∣∣∣1− ‖x‖‖x‖

∣∣∣∣ ≤ A, ∣∣∣∣1− cos∠(x, r)

cos∠(x, r)

∣∣∣∣ ≤ B, ∣∣∣∣1− cos∠(y, r)

cos∠(y, r)

∣∣∣∣ ≤ D;

then, ∣∣∣∣1− ‖αy‖‖αy‖

∣∣∣∣ ≤ (1 +A)(1 +B)(1 +D)− 1. (2.6)

Clearly, we can let A = εx.
To simplify notation, let ∠(x, r) = β and ∠(x, r) = β + δ for some δ. Then,∣∣∣∣1− cos(β + δ)

cosβ

∣∣∣∣ = |(1− cos δ) + sin δ tanβ|

=

∣∣∣∣(sin δ)(tan
δ

2
+ tanβ

)∣∣∣∣ ≤ | sin δ|(1

2
| tan δ|+ tanβ

)
. (2.7)
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Because | sin δ| ≤ εx,∣∣∣∣1− cos(β + δ)

cosβ

∣∣∣∣ ≤ εx
(

εx

2
√

1− ε2x
+ tan∠(x, r)

)
=: B. (2.8)

Similarly, let ∠(y, r) = η and ∠(y, r) = η + τ for some τ . Note that based on
Lemma 2.2, |τ | ≤ π/2− η. Using∣∣∣tan

τ

2

∣∣∣ ≤ 1

2
| tan τ | ≤ εy

2
√

1− ε2y
,

we have∣∣∣∣1− cos η

cos(η + τ)

∣∣∣∣ =

∣∣∣∣ tan η + tan(τ/2)

tan η − cot τ

∣∣∣∣ ≤ tan∠(y, r) +
εy

2
√

1−ε2y

− tan∠(y, r) +

√
1−ε2y
εy

=: D. (2.9)

With (2.8) and (2.9), we establish (2.6). Then, together with (2.5), we have proved (2.3).

Lemma 2.4. Let z = x − αy and z = x − αy, where α = (x, y)/‖y‖2 and

α = (x, y)/‖y‖2. If (x, y) and (x, y) have the same sign and there exist εx, εy such
that εx + εy < 1 and that

‖x− x‖ ≤ εx‖x‖ and ‖y − y‖ ≤ εy‖y‖,

then |α− α| ≤ εα|α| and ‖z − z‖ ≤ εz‖z‖ with

εα = (εx + εy)(1 + εy)

{
1 + (1 + εx)

[
εx + εy

2
√

1− (εx + εy)2
+ tan∠(x, y)

]}
(2.10)

and

εz = (εx+εy)(1+εx)+
εx

sin∠(x, y)
+

εy
tan∠(x, y)

+
εx + εy

tan∠(x, y)

[
1 +

(1 + εx)(εx + εy)

2
√

1− (εx + εy)2

]
.

(2.11)
In other words, denoting by ε = max{εx, εy}, we have εα ≤ Cαε and εz ≤ Czε, where
the prefactors Cα and Cz have finite limits

lim
ε→0

Cα = 2 + 2 tan∠(x, y), lim
ε→0

Cz =

(
2 +

1 + 3 cos∠(x, y)

sin∠(x, y)

)
.

Proof. Using a similar argument as in the proof of the preceding lemma, we reach

‖z − z‖ ≤ εx‖x‖+ εy‖αy‖+ ‖(α− α)y‖

≤ ‖z‖
[

εx
sin∠(x, y)

+ cot∠(x, y)

(
2εy +

∣∣∣∣1− ‖αy‖‖αy‖

∣∣∣∣)] , (2.12)

by noting that ‖αy‖ = ‖x‖ cos∠(x, y), that ‖z‖ = ‖x‖ sin∠(x, y), and that α and α
have the same sign by the condition of this lemma. Furthermore, with (2.4), which
clearly also holds here, we have

|α− α|
|α|

≤ ‖y‖
‖y‖

(
εy +

∣∣∣∣1− ‖αy‖‖αy‖

∣∣∣∣) ≤ (1 + εy)

(
εy +

∣∣∣∣1− ‖αy‖‖αy‖

∣∣∣∣) . (2.13)
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Therefore, we proceed to bound∣∣∣∣1− ‖αy‖‖αy‖

∣∣∣∣ =

∣∣∣∣1− ‖x‖‖x‖ cos∠(x, y)

cos∠(x, y)

∣∣∣∣ .
The strategy of bounding this term is to find A,B > 0 such that∣∣∣∣1− ‖x‖‖x‖

∣∣∣∣ ≤ A, ∣∣∣∣1− cos∠(x, y)

cos∠(x, y)

∣∣∣∣ ≤ B;

then, ∣∣∣∣1− ‖αy‖‖αy‖

∣∣∣∣ ≤ (1 +A)(1 +B)− 1. (2.14)

Clearly, we can let A = εx.
To simplify notation, let ∠(x, y) = β and ∠(x, y) = β + δ for some δ. Then, the

same as (2.7), we have∣∣∣∣1− cos(β + δ)

cosβ

∣∣∣∣ ≤ | sin δ|(1

2
| tan δ|+ tanβ

)
.

Let θx be the angle between x and x, and similarly for θy. Because ‖x− x‖ ≤ εx‖x‖
with εx < 1, θx is acute. Similarly, so is θy. Note that ‖x‖ sin θx ≤ ‖x− x‖ ≤ εx‖x‖;
therefore, sin θx ≤ εx, and similarly sin θy ≤ εy. Then, sin θx ≤ εx <

√
1− ε2y ≤ cos θy,

which indicates that θx + θy is also acute. Thus, the fact that |δ| ≤ θx + θy leads to
sin |δ| ≤ sin θx + sin θy ≤ εx + εy. Therefore∣∣∣∣1− cos(β + δ)

cosβ

∣∣∣∣ ≤ (εx + εy)

[
εx + εy

2
√

1− (εx + εy)2
+ tan∠(x, y)

]
=: B. (2.15)

With (2.15), we establish (2.14). Then, together with (2.13) and (2.12), we have
proved (2.10) and (2.11).

Using the above two lemmas, we have the following result. It states that the
relative perturbation to the outer residual norm is in the same order as the relative
residual norm in the inner solves.

Theorem 2.5. If Algorithm 1 (with flexible preconditioning) is run with a fi-
nite number of iterations where neither breakdown nor stagnation occurs, then under
condition (2.1), for all j,

‖rj − rj‖
‖rj‖

= O(ε). (2.16)

Proof. To facilitate presentation, we define err(a) := ‖a − a‖/‖a‖ for any vector
or scalar a 6= 0. We first observe that

‖Ap̃j −Ap̃j‖
‖Ap̃j‖

=
‖AM−1(pj −Mp̃j)‖

‖AM−1pj‖
≤ κ
‖pj −Mp̃j‖
‖pj‖

≤ κ

(
‖pj − pj‖
‖pj‖

+
‖pj −Mp̃j‖
‖pj‖

)
≤ κ

(
‖pj − pj‖
‖pj‖

+ ε
‖pj‖
‖pj‖

)
,
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where κ denotes the condition number of AM−1. Since the big-O notation is used
for sufficiently small ε, the above observation means that if err(pj) = O(ε), then
err(Ap̃j) = O(ε). Similarly, if err(sj) = O(ε), then err(As̃j) = O(ε).

We now show the theorem by induction on err(rj) and err(pj). The conditions
in the theorem (no breakdown and stagnation) are used to ensure the applicability of
the lemmas. At j = 0, r0 and p0 are unchanged under variable preconditioning. If
err(rj) = O(ε) and err(pj) = O(ε), then because err(Ap̃j) = O(ε), we have err(sj) =
O(ε) by Lemma 2.3. Consequently, err(As̃j) = O(ε), and thus err(rj+1) = O(ε) by
Lemma 2.4.

Now consider pj+1 = rj+1+βjzj where zj = pj−ωjAp̃j . Both err(pj) and err(Ap̃j)
are O(ε). On the other hand, err(ωj) is also O(ε) according to Lemma 2.4, because we
have shown that both err(sj) and err(As̃j) are O(ε). Hence, err(zj) = O(ε). Then by
invoking Lemma 2.3 again we have err(pj+1) = O(ε), which completes the induction.

Theorem 2.5 considers the perturbation of the residual in the relative sense. As
a corollary, a result for the absolute perturbation is given next. Instead of a fixed
tolerance ε for all the inner solves, we allow the tolerance, denoted by εj , to vary
in each outer iteration j. The result indicates a reciprocal relationship between the
residual norm ‖rj‖ and εj .

Corollary 2.6. Let the relative inner tolerance ε depend on the outer iterations
indexed by j, that is,

‖pj −Mp̃j‖ ≤ εj‖pj‖ and ‖sj −Ms̃j‖ ≤ εj‖sj‖.

Under the condition of Theorem 2.5, if the residual norm ‖rj‖ is monotonically de-
creasing, then for any δ there exists a constant C such that if

εj =
Cδ

‖rj‖
,

then ‖rj − rj‖ ≤ δ.
Proof. Note that Theorem 2.5 is proved by induction on j. When εj is mono-

tonically increasing but is still sufficiently small (guaranteed by a finite number of
iterations), a stronger conclusion is that there exists a C ′ that is independent of j
such that

err(rj) ≤ C ′εj , (2.17)

because in the right-hand side εj can always be relaxed later by changing it to εj+1.
Rewriting (2.17), we have ‖rj − rj‖ ≤ C ′εj‖rj‖. Therefore, if we let εj = Cδ/‖rj‖ by

using some C such that C ′C ≤ 1 and that Cδ/‖rj‖ is sufficiently small to trigger the
validity of (2.17), we immediately have ‖rj − rj‖ ≤ δ.

2.2. Interpretation and illustrative examples. Roughly speaking, the above
results state that if the perturbation to the preconditioning step is not relatively large,
then the convergence history looks similar to that of the case without perturbation.
Whereas this gives a qualitative description of the behavior of BiCGStab under vari-
able preconditioning, one must be cautious in interpreting the theoretical results and
not overly emphasize their predictive power in a quantitative manner. First and most
important, these results are not convergence assertions. Since BiCGStab itself is not
guaranteed to converge for general unsymmetric matrices, it does not seem reasonable
to expect that a flexible version magically proves the opposite.
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Second, the perturbation result is built based on a small-ε regime. Clearly, when
ε → 0, such as when ε is the machine precision, the term “flexible” gradually loses
its meaning since the convergence history will be almost identical to that of the fixed
preconditioning case. A tricky question is determining when the behavior of flexible
BiCGStab starts to diverge from that of standard BiCGStab, since it depends on when
the accumulated prefactor in front of ε, as in (2.16), grows to an unacceptable level. It
is unclear how to characterize this prefactor, but the prefactor is certainly connected
to the bound εz in Lemma 2.3 and the bounds εα and εz in Lemma 2.4. Empirically we
see that the perturbation in the range of O(10−4)–O(10−2) gives reasonably similar
convergence behavior to the case of no perturbation (ε = 0).
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Fig. 2.1. Convergence history and ‖rj − rj‖/‖rj‖ under a fixed level of perturbation ε in the

preconditioning step. In (a) a few curves are omitted to avoid cluttering.

Figure 2.1 shows the convergence results of solving a model problem that is in-
troduced in more detail in Section 3. Here, the discretization of the problem in 2D
yields a matrix of size 65, 536 × 65, 536, and a choice of the parameters γ = 4/h
and β = −0.2/h2 renders the matrix positive definite but unsymmetric. With block
Jacobi/ILU(0) preconditioning of block size 64×64 and a zero initial vector, the resid-
uals monotonically decrease to machine precision in 40 iterations (see the red curve
without markers in plot (a)).

We artificially perturbed the vectors pj and sj (see (2.1)) by a Gaussian random
vector normalized to a norm of ε‖pj‖ and ε‖sj‖, respectively, before computing the
preconditioned vectors p̃j and s̃j by block Jacobi/ILU(0). This mimics the situation
of an inexact preconditioning solve with relative residual tolerance ε. One sees that
in plot (a), as ε decreases, the convergence history is closer and closer to the reference
red curve. We also ran experiments with smaller ε’s, but the residual curves were so
close to the reference curve that we omit them in the plot to avoid cluttering. In plot
(b), we show ‖rj − rj‖/‖rj‖. As predicted by Theorem 2.5, the curves corresponding
to a smaller ε tend to be positioned below those corresponding to a larger ε.

The absolute difference, ‖rj − rj‖, on the other hand, can be made bounded as

opposed to the increasing trends of Figure 2.1(b). One simple way is, in fact, to
do nothing, because ‖rj‖ itself decreases. More interesting is that we can increase ε
across iterations, as Corollary 2.6 implies. In Figure 2.2 we define εj = D/‖rj‖ for
various different choices of D. The iterations converge to a level dependent on D.

One is tempted to infer from Corollary 2.6 that successively relaxing the pertur-
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Fig. 2.2. Convergence history and ‖rj − rj‖/‖rj‖ under a dynamically adjusted perturbation

εj = D/‖rj‖ in the preconditioning step. In (a) a few curves are omitted to avoid cluttering.

bation εj in this manner can perhaps reduce the preconditioning cost as the iterations
converge. However, several caveats render this corollary to be less practically useful
than Theorem 2.5. First, when ‖rj‖ is large, εj is typically so small that there is no
practical difference with requiring the preconditioning to be exact. Second, we do not
know the residuals rj in variable preconditioning—we have only the perturbed ones
rj . Third, the corollary is based on the condition that rj is monotonically decreas-
ing, a too restrictive requirement. Hence we consider Corollary 2.6 to be mainly of
theoretical interest.

3. Numerical examples. To empirically study when flexible preconditioning
for BiCGStab is useful and to compare its performance with that of the counterparts
of GMRES, we extend the example in Section 2 and perform more comprehensive
experimentation. Consider the linear system arising from a discretization of the PDE
(adopted from [23]):

−∆u+ γx · ∇u+ βu = f (3.1)

with zero Dirichlet boundary condition. The linear system can be made indefinite
and/or unsymmetric by changing the parameters γ and β. We discretized the 3D
domain into a regular grid of size n1 × n2 × n3 with spacing h = 1/n1 and set
γ = 4/h to make the problem unsymmetric. We varied the parameter β to include
both definite and indefinite cases. The right-hand side was chosen to be the vector
of all ones, with the initial x0 being zero. As a common practice in parallel solvers,
if no specific preconditioner is mentioned, an iterative method (including the case of
being used for inner iterations) was always preconditioned by block Jacobi/ILU(0),
where each block was handled by one processor. The experiments were conducted on
the supercomputer Titan (a Cray XK7 system) hosted at the Oak Ridge Leadership
Computing Facility [22].

We tested several β values; Table 3.1 shows the results of three representative
cases. As β decreases, the problem becomes harder to solve. In the first case (β =
0.01/h2) the system is positive definite, but in the latter two cases (β = −0.4/h2

and −0.6/h2) the system is indefinite. Figure 3.1 shows the convergence history
of BiCGStab and GMRES(30). These results were obtained on a 256 × 256 × 256
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grid using 16,384 processor cores. The relative residual tolerance and the maximum
number of iterations were 1e-8 and 200, respectively.
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Fig. 3.1. Convergence of BiCGStab and GMRES for three β’s (no inner iterations).

We compared BiCGStab, FBiCGStab/BiCGStab, GMRES, and FGMRES/GMRES,
where FBiCGStab/BiCGStab means FBiCGStab is preconditioned by BiCGStab, and
similarly for FGMRES/GMRES. In both of the flexible methods, the stopping cri-
terion for the inner iterations was either a residual tolerance or a fixed number of
iterations. The two major comparison metrics are the number of matrix-vector multi-
plications (MatMult, column 4) and the number of calls to MPI Allreduce (Allreduce,
column 5). The number of floating point operations (Flops, column 6) for computing
the inner products is listed for reference, but it is not a fair criterion for comparison
because (i) the synchronization cost in MPI Allreduce is much higher than that of
floating point operations, and (ii) GMRES requires long-term recurrence (orthogonal-
ization) whereas BiCGStab does not. The wallclock time is also listed, but note that
the fluctuations in a distributed memory computing environment and the communi-
cation latency are factors that affect the actual running time.

Several observations are made according to Table 3.1 and other experiments with
intermediate β values that are not shown in the table. First, for this set of test
cases, the GMRES family in general performs better when the system is relatively
easy to solve; but as the difficulty level increases, the BiCGStab family outperforms
the GMRES family. One sees that in the first case (β = 0.01/h2) GMRES is the
best solver, whereas in the second case it failed to converge to the required tolerance
but BiCGStab did converge. In the second case (β = −0.4/h2), however, the fastest
solver is still in the GMRES family. Nevertheless, when moving to the third case
(β = −0.6/h2), FBiCGStab with an inner tolerance stopping criterion clearly wins
over all other solvers. This interesting phenomenon indicates that even for the same
problem, different solvers may have significantly different performance profiles as the
problem parameters vary.

Second, for a flexible Krylov method, using a fixed number of inner iterations
can sometimes achieve excellent performance; but as the problem becomes harder
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Table 3.1
Solution summary of (3.1) with three choices of β. Arrows point to the fastest run.

Outer Time
MatMult

Inner Product
β = 0.01/h2 Iter. (sec×10−1) Allreduce Flops×105
BiCGStab 21 1.132 42 84 3.010
FBiCGStab, inner rtol = 1e-3 2 1.397 58 120 4.246
FBiCGStab, inner rtol = 1e-2 2 1.335 44 92 3.233
FBiCGStab, inner rtol = 1e-1 4 1.364 54 116 4.037
FBiCGStab, inner max it = 5 2 1.131 44 92 3.233
FBiCGStab, inner max it = 10 1 1.147 40 82 2.910
FBiCGStab, inner max it = 20 1 1.226 46 94 3.334
GMRES 29 0.874 29 58 9.494 ←
FGMRES, inner rtol = 1e-3 3 1.122 40 83 6.081
FGMRES, inner rtol = 1e-2 4 7.200 37 78 4.240
FGMRES, inner rtol = 1e-1 7 1.153 38 83 3.292
FGMRES, inner max it = 5 6 1.072 36 78 3.130
FGMRES, inner max it = 10 3 1.066 33 69 4.237
FGMRES, inner max it = 20 2 1.065 40 82 8.720

β = −0.4/h2 ×100 ×106
BiCGStab 105 0.356 210 420 1.505
FBiCGStab, inner rtol = 1e-3 2 0.668 438 880 3.144
FBiCGStab, inner rtol = 1e-2 2 0.499 270 544 1.948
FBiCGStab, inner rtol = 1e-1 6 0.832 586 1184 4.225
FBiCGStab, inner max it = 5 fail - - - -
FBiCGStab, inner max it = 10 fail - - - -
FBiCGStab, inner max it = 20 25 2.517 2050 4150 14.800
GMRES fail - - - -
FGMRES, inner rtol = 1e-3 3 1.556 1165 2298 37.890
FGMRES, inner rtol = 1e-2 4 1.062 803 1586 25.550
FGMRES, inner rtol = 1e-1 7 0.791 560 1113 17.160
FGMRES, inner max it = 5 26 0.282 156 338 1.893
FGMRES, inner max it = 10 14 0.278 154 322 2.134 ←
FGMRES, inner max it = 20 12 0.373 252 516 5.861

β = −0.6/h2 ×101 ×107
BiCGStab fail - - - -
FBiCGStab, inner rtol = 1e-3 2 0.951 8314 16632 5.962
FBiCGStab, inner rtol = 1e-2 2 0.572 5024 10052 3.605 ←
FBiCGStab, inner rtol = 1e-1 15 3.564 30120 60270 21.560
FBiCGStab, inner max it = 5 fail - - - -
FBiCGStab, inner max it = 10 fail - - - -
FBiCGStab, inner max it = 20 fail - - - -
GMRES fail - - - -
FGMRES, inner rtol = 1e-3 5 5.291 51670 101680 169.600
FGMRES, inner rtol = 1e-2 5 4.589 41800 82259 136.560
FGMRES, inner rtol = 1e-1 7 3.903 37757 74305 123.730
FGMRES, inner max it = 5 fail - - - -
FGMRES, inner max it = 10 fail - - - -
FGMRES, inner max it = 20 fail - - - -
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and harder, it is difficult to specify an appropriate number a priori to ensure the
convergence of the outer iterations. One sees that in the first case, using a fixed
number of inner iterations as the stopping criterion is in general preferable over using
a residual tolerance. This is also true in the second case for the FGMRES solvers;
however, for the FBiCGStab solvers the situation is completely opposite. In the third
case, none of the solvers using a fixed number of inner iterations converged. In this
sense, setting an inner tolerance is a more robust practice.

Third, one can choose an “optimal” inner tolerance for a flexible method. One sees
that for FBiCGStab the inner tolerance 1e-2 yields the best results in all the cases,
whereas for FGMRES the tolerance is 1e-1. This is consistent with the observation
made in the experiments of flexible QMR [33], which states that the total solver cost
first decreases, then increases as the inner solves are more and more exact. The
“optimal” inner tolerance may be related to the convergence behavior of the inner
iterations. One sees that in Figure 3.1 the relative residual norm of BiCGStab has
a steep decrease at the beginning, until between 1e-1 and 1e-2. This may be the
stopping point when BiCGStab becomes the most effective as an inner solve.

Fourth, the inner-outer iterations (that is, FBiCGStab/BiCGStab and FGM-
RES/GMRES) are often a better alternative to the standard iterations (that is,
BiCGStab and GMRES). In harder problems the standard iterations did not con-
verge whereas the inner-outer iterations did. In fact, the outer iterations converge
extremely fast when an appropriate inner tolerance is used.

4. Application. In this section, we explore the use of flexible BiCGStab to
improve the run-time performance of a large-scale application, PFLOTRAN [17, 19],
where historically standard BiCGStab with block Jacobi/ILU(0) preconditioner has
been the preferred linear solver. Based on the analysis in Section 2, we compose
a multigrid (MG) preconditioner. Its use with BiCGStab yields two to three times
improvement in solution time onO(104)–O(105) processor cores. When the coarse grid
solver varies slightly (thus becoming a variable preconditioner and having to be used
with FBiCGStab), we gain an additional 10–20% in overall runtime improvement.

PFLOTRAN is a state-of-the-art code for simulating multiscale, multiphase, mul-
ticomponent flow and reactive transport in geologic media. It solves a coupled system
of mass and energy conservation equations for a number of phases, including air,
water, supercritical CO2 and a number of chemical components. The code utilizes
finite volume or mimetic finite difference spatial discretizations and backward-Euler
(fully implicit) timestepping. At each time step, Newton-Krylov methods are used
for solving the resulting nonlinear algebraic equations. PFLOTRAN is built on the
PETSc library [3, 4] and makes extensive use of PETSc iterative nonlinear and linear
solvers.

The governing equations are described by Richards’ equation:

∂

∂t

(
ϕsρ

)
+∇ · ρu = S,

where ϕ denotes the porosity of the geologic medium, s the saturation (fraction of pore
volume filled with liquid water), ρ the fluid density, S a source/sink term representing
water injection/extraction, and u the Darcy velocity defined as

u = −κκr
µ
∇
(
P − ρgz

)
,

where P denotes fluid pressure, µ viscosity, κ the absolute permeability of the medium,
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κr the relative permeability of water to air, g the acceleration of gravity, and z the
vertical distance from a datum.

We consider two benchmark problems [18]:

Case 1: Cubic domain with a central injection well. This case models a 100m ×
100m × 100m domain with a uniform effective permeability of 1 darcy and
an injection well at the exact center.

Case 2: Regional flow without well near river. This case models a 5000m × 2500m
× 100m region with a river at the eastern boundary.

In our numerical experiments, we ran each test case with a minimum number of time
steps—six for case 1 and two for case 2— at which the number of linear iterations per
Newton step became stabilized.

BiCGStab preconditioned by block Jacobi/ILU(0) has been the preferred linear
solver for PFLOTRAN because of its small memory consumption, compared with
that of GMRES, and the empirically fast convergence. Similar to other Krylov meth-
ods, however, as the size of the application and the number of processors increase,
BiCGStab encounters a well-known scaling difficulty for over 10,000 processor cores
because of the bottleneck in vector inner-product calculations. The synchronization
cost in MPI Allreduce for computing inner products can constitute more than half
of the solution time. In order to overcome the scaling difficulty, two algorithms were
explored to successfully reduce the synchronization cost [18]. One was the use of
flexible GMRES with a hierarchical GMRES preconditioner, where inner GMRES
iterations are run on diagonal submatrices over subgroups of processor cores only.
On each submatrix, inner GMRES is further preconditioned by block Jacobi/ILU(0).
We denote this approach FGMRES/h-GMRES. The second algorithm was to use the
IBiCGStab algorithm [39] with a Chebyshev preconditioner. We denote this approach
to be IBiCGStab/Chebyshev. IBiCGStab is mathematically equivalent to BiCGStab,
but the iterates are reorganized so that several inner products are computed together
to reduce the number of synchronizations. The Chebyshev iterations may not be as ef-
fective in reducing the condition number as other Krylov iterations, but an advantage
is that it does not require any inner product calculations and thus can be used as a
fixed preconditioner. The two algorithms are based on the idea of reducing expensive
global inner products across the entire system by using cheaper local inner products
(e.g., FGMRES/h-GMRES) or inner iterations that do not compute inner products
at all (e.g., IBiCGStab/Chebychev).

The success in [18] prompted us to explore similar ideas for BiCGStab. The first
attempt was to use BiCGStab in place of GMRES in FGMRES/h-GMRES, such as
FBiCGStab/h-GMRES and FBiCGStab/h-BiCGStab. The use of a small constant
number of inner iterations generally failed for convergence; the failure is not surprising
because a few iterations make the preconditioner vary too much, and FBiCGStab does
not guarantee any form of outer convergence as does FGMRES (monotonic decrease
of residuals regardless of the varying of preconditioner). On the other hand, when we
used an inner tolerance as the stopping criterion, convergence is seen for a reasonably
chosen value (see Figure 4.1). In fact, the general trend for the same tolerance is
similar for whichever preconditioner is used, either h-GMRES or h-BiCGStab, and
the smaller the tolerance, the closer the residual history is to a fixed preconditioner
case. However, this convergence was obtained at the cost of a large number of inner
iterations. The overall run time cannot compete with the simple strategy of using
BiCGStab preconditioned by block Jacobi/ILU(0).

We therefore searched for a preconditioner that converges faster to the level of



16 J. CHEN, L.C. MCINNES, AND H. ZHANG

0 20 40 60 80 100
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

outer iterations

ab
so

lu
te

 r
es

id
ua

l d
iff

er
en

ce

 

 

FBiCGStab/h−GMRES: 1.e−2
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Fig. 4.1. Convergence history of FBiCGStab/h-GMRES and FBiCGStab/h-BiCGStab for
PFLOTRAN case 1 (mesh size 256× 256× 256) using 512 processor cores.

1e-2 to 1e-3. Among all preconditioners examined, we settled on multigrid with
a particular choice of the smoothers and the coarse-grid solver. Multigrid (MG) is
generally applicable to steady-state or close to steady-state problems, such as the two
cases of PFLOTRAN we consider here. In the standard setting, multigrid is a fixed
preconditioner, because the smoothers (such as SOR or Chebyshev) require no inner-
product calculations and the coarsest-grid problem is solved exactly by using a direct
linear solver. In other words, one can, in principle, write down the linear operator for
one cycle of multigrid and see that it does not vary.

For PFLOTRAN applications, the MG preconditioner was known to work well
on a small number of processors, but the performance started tailing off at around
1,000 processor cores [16]. The difficulty to scale up the number of processors is that
in the coarsest level, the problem is so small that the communication cost outweighs
the computational cost. We cope with this difficulty by limiting the number of levels
(effectively, three), such that the coarsest grid is not too small, and employing an itera-
tive method to approximately solve the coarsest-grid problem. Two coarse grid solvers
are (1) 100 Chebyshev iterations, and (2) 5 IBiCGStab iterations, each preconditioned
by 20 Chebyshev iterations. For the former, even though the coarsest-grid problem is
not solved to full accuracy, multigrid is still considered a fixed preconditioner because
there are no inner product calculations. For the latter, clearly, multigrid is a variable
preconditioner.

We conducted experiments with the above ideas on two computer systems: In-
trepid, an IBM Blue Gene/P supercomputer located at the Argonne Leadership Com-
puting Facility [1], and Titan, a Cray XK7 system located at the Oak Ridge Leadership
Computing Facility [22]. Intrepid has 40,960 nodes, each consisting of one 850 MHz
quad-core processor and 2GB RAM, resulting in a total of 163,840 cores, 80TB of
memory, and a peak performance of 557 TFlops. Titan has 18,688 compute nodes,
each consisting of one AMD 16-core Opteron 6274 processor running at 2.2GHz and
32GB of memory, giving a total of 299,008 cores.
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Table 4.1
BiCGStab and FBiCGStab for PFLOTRAN on Intrepid (IBM Blue Gene/P), Case 1.

IBiCGS/Cheby BiCGStab/MG FBiCGStab/Variable MG
Smoother: Cheby Smoother: Cheby

Number of Cores CSolve: Cheby CSolve: IBiCGS/Cheby
(Mesh Size) Iter. Time Iter. Time Iter. Time (% Reduction)

512
(256x256x256) 547 212.8 29 97.2 23 86.4 (11%)

4,096
(512x512x512) 1006 365.1 43 121.3 33 106.1 (12%)

32,768
(1024x1024x1024) 1886 654.3 62 153.7 37 119.1 (23%)

163,840
(1600x1600x640) 2843 308.3 88 81.8 53 65.7 (20%)

Table 4.2
BiCGStab and FBiCGStab for PFLOTRAN on Intrepid (IBM Blue Gene/P), Case 2.

IBiCGS/Cheby BiCGStab/MG FBiCGStab/Variable MG
Smoother: Cheby Smoother: Cheby

Number of Cores CSolve: Cheby CSolve: IBiCGS/Cheby
(Mesh Size) Iter. Time Iter. Time Iter. Time (% Reduction)

16,384
(1600x816x320) 844 231.1 33 64.3 22 52.6 (18%)

98,304
(1600x1632x640) 1520 270.5 61 70.0 39 54.7 (22%)

163,840
(1600x1632x640) 1499 169.3 62 52.0 36 40.2 (23%)

Tables 4.1 through 4.4 compare the performance of (1) IBiCGStab/Chebyshev,
(2) BiCGStab with the fixed MG preconditioner, and (3) FBiCGStab with the variable
MG preconditioner on the two benchmark cases. The results of IBiCGStab/Chebyshev
(columns 2–3) have been reported in [18] and are used here as the baseline of compar-
ison. For MG preconditioners (columns 4–8), V-cycle was used; the smoothers were 2
steps of Chebyshev iterations because we found that Chebyshev outperformed other
choices of smoothers. For both smoothers and coarse grid solvers, block Jacobi/ILU(0)
was used as the innermost preconditioner.

Overall, FBiCGStab with an MG preconditioner is two to three times faster than
the baseline IBiCGStab/Chebyshev on a large number of processor cores. Hence, the
focus of comparison here is how much reduction in execution time one can achieve
by using a variable preconditioner compared with using a fixed one. The percentage
of reduction in execution time relative to the fixed MG preconditioner is listed in
column 8 (% Reduction). As the size of the problem (hence coarsest grid) increases,
the fixed number of iterations used for the coarsest-grid solver weakens the MG pre-
conditioner, resulting in an increased number of outer iterations. Such an increase is
less significant for the variable MG preconditioner because IBiCGStab/Chebyshev is
more effective as a preconditioner than Chebyshev alone is. For example, when the
number of cores becomes larger than 30,000, the number of outer iterations for using
the variable MG preconditioner is almost half that of using the fixed MG precondi-
tioner, leading to a reduction of 10% and 20% in overall execution time, on Titan and
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Table 4.3
BiCGStab and FBiCGStab for PFLOTRAN on Titan (Cray XK7), Case 1.

IBiCGS/Cheby BiCGStab/MG FBiCGStab/Variable MG
Smoother: Cheby Smoother: Cheby

Number of Cores CSolve: Cheby CSolve: IBiCGS/Cheby
(Mesh Size) Iter. Time Iter. Time Iter. Time (% Reduction)

512
(256x256x256) 546 24.2 29 13.5 23 12.5 (7%)

4,096
(512x512x512) 1033 44.1 43 18.1 33 16.6 (8%)

32,768
(1024x1024x1024) 2073 89.0 62 27.4 37 24.3 (11%)

160,000
(1600x1600x640) 2407 52.0 91 24.9 55 22.5 (10%)

Table 4.4
BiCGStab and FBiCGStab for PFLOTRAN on Titan (Cray XK7), Case 2.

IBiCGS/Cheby BiCGStab/MG FBiCGStab/Variable MG
Smoother: Cheby Smoother: Cheby

Number of Cores CSolve: Cheby CSolve: IBiCGS/Cheby
(Mesh Size) Iter. Time Iter. Time Iter. Time (% Reduction)

1,600
(800x408x160) 411 18.0 20 8.8 20 8.8 (0%)

16,000
(1600x816x320) 829 29.6 30 11.3 22 10.9 (4%)

80,000
(1600x1632x640) 1578 53.1 60 16.7 38 15.0 (10%)

224,000
(1600x1632x640) 1501 20.9 66 16.6 37 14.8 (11%)

Intrepid, respectively.

Comparing the results obtained on the two machines, one sees a consistent iter-
ation number (for some grid sizes, a slightly different number of processor cores was
used across machines; this affected the innermost block Jacobi/ILU(0), thus making
the iteration numbers slightly different). However, the time improvement of using a
variable MG preconditioner is very different across the two machines. Because the
clock rate of Intrepid is much lower than that of Titan, the solution time on Intrepid
is longer. However, the communication network of Intrepid has a lower latency, so the
global synchronization cost of MPI Allreduce is smaller. We thus achieve better per-
formance improvement on Intrepid because the variable MG preconditioner requires
inner product calculations in the coarsest-grid solves. This phenomenon is not rare in
practice. It showcases that for a solver, not only the theoretical convergence matters,
but also the machine architecture plays an important role.

5. Concluding remarks. BiCGStab has been the de facto method of choice in
many application domains for solving linear systems. Motivated by the challenges in
large-scale scientific applications and extreme-scale computer architectures that en-
courage the use of variable preconditioners, we analyzed flexible BiCGStab and showed
that the change of the convergence behavior with respect to standard BiCGStab is
in accordance with the inaccuracy of the preconditioning solves. Thus, often a stop-
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ping criterion with a moderate tolerance, say 1e-4 to 1e-2, for the preconditioning
solves is favored in order both to maintain convergence and to reduce overall compu-
tation time. To this end, we demonstrated through numerical experiments, including
the PFLOTRAN reacting flow application, that FBiCGStab with variable precondi-
tioning yields superior performance on extreme-scale computers. This work provides
insight on the practical use of FBiCGStab for large-scale applications.
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